

Results of Proficiency Test Styrene October 2022

Institute for Interlaboratory Studies Spijkenisse, the Netherlands Organized by:

Author:

Mrs. E.R. Montenij-Bos

Correctors:

ing. R.J. Starink & ing. A. Ouwerkerk ing. A.S. Noordman-de Neef

Approved by:

Report:

iis22C08

November 2022

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYZES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER TEST	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2022 WITH PREVIOUS PTS	11

Appendices:

1.	Data, statistical and graphic results	13
2.	Number of participants per country	36
3	Abbreviations and literature	37

1 Introduction

Since 1999 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of Styrene in accordance with the latest version of ASTM D2827 every year. During the annual proficiency testing program 2022/2023 it was decided to continue the round robin for the analysis of Styrene.

In this interlaboratory study 34 laboratories in 17 countries registered for participation, see appendix 2 for the number of participants per country. In this report the results of the Styrene proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one sample Styrene in a 0.5 L glass bottle labelled #22180. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for the statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

Styrene: iis22C08 page 3 of 37

2.4 SAMPLES

A batch of approximately 35 liters of Styrene was obtained from a local supplier. This batch was spiked with Benzene and Toluene. After homogenization 70 amber glass bottles of 0.5 L were filled and labelled #22180.

The homogeneity of the subsamples was checked by determination of Density at 20 °C in accordance with ASTM D4052 on 8 stratified randomly selected subsamples.

	Density at 20 °C in kg/L
sample #22180-1	0.90622
sample #22180-2	0.90627
sample #22180-3	0.90622
sample #22180-4	0.90626
sample #22180-5	0.90624
sample #22180-6	0.90626
sample #22180-7	0.90623
sample #22180-8	0.90622

Table 1: homogeneity test results of subsamples #22180

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Density at 20 °C in kg/L
r (observed)	0.00006
reference test method	ISO12185:96
0.3 x R (reference test method)	0.00015

Table 2: evaluation of the repeatability of subsamples #22180

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one 0.5 L bottle of Styrene labelled #22180 was sent on September 07, 2022. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of Styrene packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

page 4 of 37 Styrene: iis22C08

2.6 ANALYZES

The participants were requested to determine: Aldehydes as Benzaldehyde, Appearance, Organic Chlorides, Color Pt/Co, Density at 20 °C, Inhibitor as TBC, Peroxides as H_2O_2 , Polymer, Total Sulfur, Water, Purity by GC, Benzene, Toluene, Ethylbenzene, sum of m- and p-Xylenes, iso-Propylbenzene (Cumene), o-Xylene, n-Propylbenzene, sum of m- and p-Ethyltoluenes, alpha-Methylstyrene, 1,2-Diethylbenzene, sum of alpha-Methylstyrene and 1,2-Diethylbenzene, Phenylacetylene, 3/4-Methylstyrenes, sum of Phenylacetylene and 3/4-Methylstyrenes, Benzaldehyde and Non-aromatics.

It was also requested to report some analytical details on the determination of Aldehydes as Benzaldehyde.

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

Styrene: iis22C08 page 5 of 37

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by G(0.01) for the Rosner's test. Stragglers are marked by G(0.05) for the Dixon's test, by G(0.05) or G(0.05) for the Grubbs' test and by G(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1. was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

page 6 of 37 Styrene: iis22C08

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}
```

The $z_{\text{(target)}}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

4 **EVALUATION**

Some problems were encountered with the dispatch of the samples due to COVID-19 pandemic. One participant reported test results after the extended reporting date and eight other participants did not report any test results. Not all participants were able to report all tests requested.

In total 26 participants reported 334 numerical test results. Observed were 6 outlying test results, which is 1.8%. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Styrene: iis22C08 page 7 of 37

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 3.

Unfortunately, a suitable reference test method, providing the precision data, is not available for all determinations. For these tests the calculated reproducibility was compared against the estimated reproducibility calculated with the Horwitz equation.

In the iis PT reports ASTM test methods are referred to with a number (e.g. D2121) and if appropriate an indication of sub test method (e.g. D2121-A) and an added designation for the year that the test method was adopted or revised (e.g. D2121-A:16).

- Aldehydes as Benzaldehyde: This determination was problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ASTM D7704:16.
- <u>Appearance</u>: This determination was not problematic. All reporting participants agreed about the appearance of the sample as Pass (Clear & Bright).
- Organic Chlorides: This determination was not problematic. The reporting participants agreed on a value near or below the application range. Therefore, no z-scores are calculated.
- <u>Color Pt/Co</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D5386:16.
- <u>Density at 20 °C</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ISO12185:96.
- Inhibitor as TBC: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D4590:18.
- <u>Peroxides as H₂O₂</u>: This determination was very problematic. Three statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not at all in agreement with the requirements of ASTM D2340:18.

page 8 of 37 Styrene: iis22C08

<u>Polymer</u>: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in agreement with the

requirements of ASTM D2121-A:16.

<u>Total Sulfur</u>: This determination was not problematic. The reporting participants agreed

on a value near or below the application range. Therefore, no z-scores are

calculated.

Water: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in full agreement with the

requirements of ASTM E1064:16.

<u>Purity by GC</u>: This determination was problematic. No statistical outliers were observed.

The calculated reproducibility is not in agreement with the requirements of

ASTM D5135:21.

Benzene: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical

outlier is in agreement with the requirements of ASTM D5135:21.

<u>Toluene</u>: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the estimated reproducibility calculated with the

Horwitz equation.

Ethylbenzene: This determination was not problematic. No statistical outliers were

observed. The calculated reproducibility is in agreement with the

requirements of ASTM D5135:21.

sum of m- and p-Xylenes: This determination was not problematic. The reporting participants

agreed on a value near or below the application range. Therefore, no

z-scores are calculated.

<u>iso-Propylbenzene</u>: This determination was not problematic. The reporting participants

agreed on a value near or below the application range. Therefore, no

z-scores are calculated.

<u>o-Xylene</u>: This determination was not problematic. The reporting participants agreed

on a value near or below the application range. Therefore, no z-scores are

calculated.

n-Propylbenzene: This determination was not problematic. The reporting participants agreed

on a value near or below the application range. Therefore, no z-scores are

calculated.

sum of m- and p-Ethyltoluenes: This determination was not problematic. The reporting

participants agreed on a value near or below the application range.

Therefore, no z-scores are calculated.

Styrene: iis22C08 page 9 of 37

- <u>alpha-Methylstyrene</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D5135:21.
- <u>1,2-Diethylbenzene</u>: Only two participants reported a test result. No conclusions could be drawn.
- <u>sum of alpha-Methylstyrene and 1,2-Diethylbenzene</u>: Only two participants reported a test result. No conclusions could be drawn.
- <u>Phenylacetylene</u>: This determination was not problematic. The reporting participants agreed on a value near or below the application range. Therefore, no z-scores are calculated.
- <u>3/4-Methylstyrenes</u>: Only six participants reported a test result. No conclusions could be drawn.
- <u>sum of Phenylacetylene and 3/4-Methylstyrenes</u>: Only four participants reported a test result.

 No conclusions could be drawn.
- <u>Benzaldehyde</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements of ASTM D5135:21.
- Non-aromatics: This determination was very problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is not at all in agreement with the requirements of ASTM D5135:21.

4.2 PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Aldehydes as Benzaldehyde	mg/kg	19	128	126	106
Appearance		24	Pass	n.a.	n.a.
Organic Chlorides	mg/kg	14	<1	n.e.	n.e.
Color Pt/Co		26	9.1	5.3	6.0
Density at 20 °C kg/		23	0.9063	0.0002	0.0005
Inhibitor as TBC	mg/kg	25	4.3	1.9	2.7
Peroxides as H ₂ O ₂ mg/kg		14	45.1	31.0	13
Polymer	mg/kg	24	4.9	3.8	5.7
Total Sulfur	mg/kg	19	<1	n.e.	n.e.

page 10 of 37 Styrene: iis22C08

Parameter	unit	n	average	2.8 * sd	R(lit)
Water	mg/kg	26	121	40	44
Purity by GC	%M/M	22	99.941	0.038	0.030
Benzene	mg/kg	17	15.8	5.2	6.8
Toluene	mg/kg	14	17.4	4.0	5.1
Ethylbenzene	mg/kg	20	132.1	16.1	29.7
sum of m- and p-Xylenes	mg/kg	14	<10	n.e.	n.e.
iso-Propylbenzene (Cumene)	mg/kg	17	<10	n.e.	n.e.
o-Xylene	mg/kg	17	<10	n.e.	n.e.
n-Propylbenzene	mg/kg	12	<10	n.e.	n.e.
sum of m- and p-Ethyltoluenes	mg/kg	9	<10	n.e.	n.e.
alpha-Methylstyrene	mg/kg	18	203.5	29.5	37.4
1,2-Diethylbenzene	mg/kg	2	n.e.	n.e.	n.e.
sum of alpha-Methylstyrene and 1,2-Diethylbenzene	mg/kg	2	n.e.	n.e.	n.e.
Phenylacetylene	mg/kg	12	<10	n.e.	n.e.
3/4-Methylstyrenes	mg/kg	6	n.e.	n.e.	n.e.
sum of Phenylacetylene and 3/4-Methylstyrenes	mg/kg	4	n.e.	n.e.	n.e.
Benzaldehyde	mg/kg	11	136.0	47.5	51.0
Non-aromatics	mg/kg	10	44.4	107.0	51.8

Table 3: reproducibilities of tests on sample #22180

Without further statistical calculations, it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2022 WITH PREVIOUS PTS

	October 2022	October 2021	October 2020	October 2019	October 2018
Number of reporting laboratories	26	28	37	29	39
Number of test results	334	345	498	468	649
Number of statistical outliers	6	16	9	10	25
Percentage of statistical outliers	1.8%	4.6%	1.8%	2.1%	3.9%

Table 4: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared to the requirements of the reference test methods. The conclusions are given in the following table.

Styrene: iis22C08 page 11 of 37

Parameter	October 2022	October 2021	October 2020	October 2019	October 2018
Aldehydes as Benzaldehyde	=	++	++	++	
Organic Chloride	n.e.	++	+	+/-	+
Color Pt/Co	+	+/-	+	+	+
Density at 20 °C	++	++	++	++	++
Inhibitor as TBC	+	+	+	+	+/-
Peroxides as H ₂ O ₂		-	-	-	-
Polymer	+	++	+	++	++
Total Sulfur	n.e.	+/-	n.e.	-	+/-
Water	+/-	-	+	-	+
Purity by GC	-	+	+	-	
Benzene	+	+	n.e.	+	+
Toluene	+	+	n.e.	+	+/-
Ethylbenzene	+	+/-	+/-	+	+
sum of m- and p-Xylenes	n.e.	n.e.	+	+/-	+
iso-Propylbenzene (Cumene)	n.e.	n.e.	n.e.		-
o-Xylene	n.e.	n.e.	n.e.	+	+
n-Propylbenzene	n.e.	n.e.	n.e.		-
sum of m- and p-Ethyltoluenes	n.e.	n.e.	n.e.	-	+
alpha-Methylstyrene	+	-	+/-	+	-
1,2-Diethylbenzene	n.e.	n.e.	n.e.	n.e.	n.e.
sum of alpha-Methylstyrene and 1,2-Diethylbenzene	n.e.	n.e.	-	n.e.	()
Phenylacetylene	n.e.	n.e.	n.e.	-	+/-
3/4-Methylstyrenes	n.e.		n.e.	n.e.	+/-
sum of Phenylacetylene and 3/4-Methylstyrenes	n.e.	+	n.e.	n.e.	()
Benzaldehyde	+/-	+	-	-	
Non-aromatics		-	-	-	+/-

Table 5: comparison of the determinations to the reference test methods

For results between brackets no z-scores are calculated

The following performance categories were used:

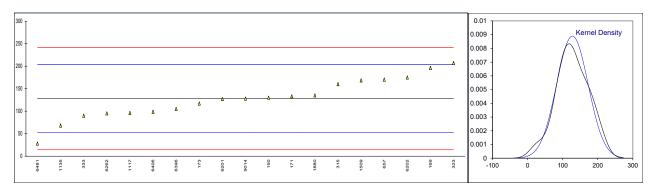
++ : group performed much better than the reference test method

+ : group performed better than the reference test method

+/- : group performance equals the reference test method

- : group performed worse than the reference test method

-- : group performed much worse than the reference test method


n.e. : not evaluated

page 12 of 37 Styrene: iis22C08

APPENDIX 1

Determination of Aldehydes as Benzaldehyde on sample #22180; results in mg/kg

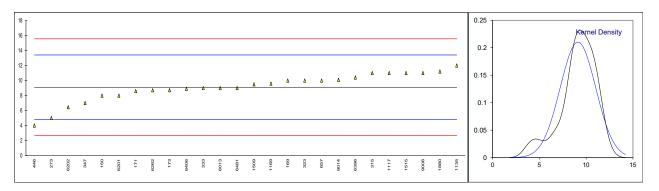
lab	method	value	mark		remarks
150	D2119	130	IIIai K	z(targ) 0.06	I GIIIQI NƏ
169	D2119 D2119	196		1.80	
171	D2119	133		0.14	
173	D2119	117		-0.28	
273					
315	D2119	160		0.85	
323	D2119	207		2.09	
333	D2119	90	С	-1.00	reported 0.009 mg/kg
347					
446					
551					
557					
657	D2119	170		1.12	
902					
913					
1117	D7704	96.16		-0.83	
1135	D2119	68		-1.58	
1169					
1264 1509	D2119	168.32		1.07	
1515	DZTIB	100.32		1.07	
1823					
1880	D7704	135		0.19	
6013	D1104				
6198					
6201	D2119	127		-0.02	
6202	D2119	174.77		1.24	
6262	D2119	95		-0.86	
6396	D2119	105		-0.60	
6406	D2119	98.6		-0.77	
6481	D2119	28		-2.63	
7014					
9008					
9014	D2119	128		0.01	
	normality	OK			
	n	19			
	outliers	0			
	mean (n)	127.729			
	st.dev. (n)	44.8484			
	R(calc.)	125.576			
	st.dev.(D7704:16)	37.8571			
	R(D7704:16)	106			

Styrene: iis22C08 page 13 of 37

Determination of Appearance on sample #22180;

lab	method	value	mark	z(targ)	remarks
150	Visual	Clear and Bright			
169	D4176	Pass			
171	E2680	Pass			
173	D4176	Pass			
273	Visual	Bright & Clear			
315	E2680	pass			
	Visual	C&B			
333					
347	E2680	Pass			
446	D4176	Pass			
551					
557					
657	E2680	PASS			
902					
913	5.4.50				
1117	D4176	PASS			
1135	Visual	Clear & Bright			
1169	D4176	Pass			
1264	F0600	Clear & FFCM			
1509 1515	E2680 E2680	Clear & FFSM Pass			
1823	E2000				
	Visual	Pass			
6013	E2680	Pass			
6198	L2000				
	Visual	Br/CL			
	Visual	Clear			
	Visual	clear and bright			
	Visual	Clear and bright			
	Visual	Clear and Bright			
6481	D4176	C,B,F			
7014					
9008					
9014	E2680	pass			
	n	24			
	mean (n)	Pass			

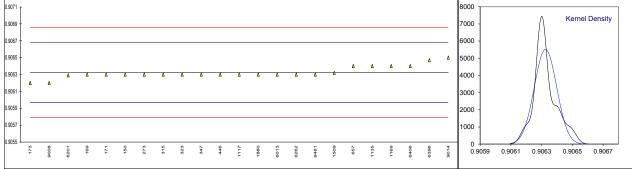
page 14 of 37 Styrene: iis22C08


Determination of Organic Chlorides on sample #22180; results in mg/kg

lah	method	value	mork -/to	a) romarka
lab	теспоа	value	mark z(ta	
150				
169 171	D5808	<1.0	-	
171	D3606	<1.0 	-	
273				
315	D5808	<0.7		
323	UOP779	< 1		
333	D5808	<0.2		
347	D4929	<1		
446	2 1020			
551				
557				
657	D5808	0.1884	_	
902				
913				
1117	D7359	0.03		
1135	UOP779	<0.3		
1169				
1264				
1509	D5808	<0.1		
1515			-	
1823				
1880	D7359	<0.1		
6013				
6198	5-000		-	
6201	D5808	0.04	-	
6202	1100770			
6262	UOP779	<1		
6396	D7536	0.0		
6406				
6481 7014				
9008	D5194	<0.1		
9008	DJ 134	~ 0.1		
30 14			- -	
	n	14		
	mean (n)	<1		
	` '			

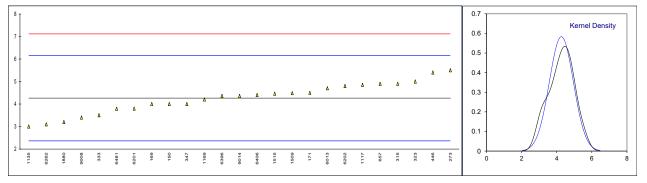
Styrene: iis22C08 page 15 of 37

Determination of Color Pt/Co on sample #22180;


lab	method	value	mark	z(targ)	remarks
150	D5386	8		-0.52	
169	D5386	10		0.41	
171	D5386	8.6		-0.24	
173	D5386	8.71		-0.19	
273	D1209	5		-1.92	
315	D5386	11		0.88	
323	D5386	10		0.41	
333	D5386	9		-0.06	
347	D5386	7		-0.99	
446	D5386	4		-2.39	
551					
557					
657	D5386	10		0.41	
902					
913					
1117	D1209	11		0.88	
1135	D5386	12		1.34	
1169	D5386	9.6		0.22	
1264					
1509	D1209	9.5		0.18	
1515	D1209	11		0.88	
1823					
1880	D5386	11.2		0.97	
6013	D5386	9		-0.06	
6198					
6201	D5386	8		-0.52	
6202	D1209	6.45		-1.24	
6262	D5386	8.7		-0.20	
6396	D5386	10.4		0.60	
6406	D5386	8.9		-0.10	
6481	D5386	9	С	-0.06	first reported 0
7014					·
9008	D5386	11		0.88	
9014	D5386	10.1		0.46	
	normality	suspect			
	n	26			
	outliers	0			
	mean (n)	9.12			
	st.dev. (n)	1.898			
	R(calc.)	5.32			
	st.dev.(D5386:16)	2.146			
	R(D5386:16)	6.01			
Compa					
	R(D1209:05)	7			
	,/				

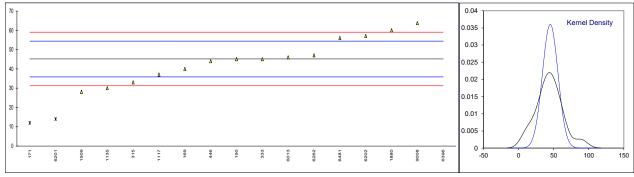
page 16 of 37 Styrene: iis22C08

Determination of Density at 20 °C on sample #22180; results in kg/L


lab	method	value	mark	z(targ)	remarks
150	D4052	0.9063		-0.14	
169	D4052	0.9063		-0.14	
171	D4052	0.9063		-0.14	
173	D4052	0.9062		-0.70	
273	D4052	0.9063		-0.14	
315	D4052	0.9063		-0.14	
323	D4052	0.9063		-0.14	
333					
347	D4052	0.9063		-0.14	
446	D4052	0.9063		-0.14	
551	2 .002				
557					
657	D4052	0.9064		0.42	
902	D-1002				
913					
1117	D4052	0.9063	С	-0.14	first reported 906.3 kg/L
1135	ISO12185	0.9064	C	0.42	ilist reported 900.3 kg/L
1169	D4052	0.9064		0.42	
1264	D4032	0.9004		0.42	
1509	D4052	0.90632		-0.03	
1515	D4052				
1823	D4050				
1880	D4052	0.9063		-0.14	
6013	ISO12185	0.9063		-0.14	
6198	1001010=				
6201	ISO12185	0.90629		-0.20	
6202	D 40-50				
6262	D4052	0.9063		-0.14	
6396	D4052	0.90647		0.81	
6406	ISO12185	0.9064		0.42	
6481	D4052	0.9063		-0.14	
7014					
9008	D4052	0.9062		-0.70	
9014	D4052	0.90650		0.98	
	normality	OK			
	n	23			
	outliers	0			
	mean (n)	0.90632			
	st.dev. (n)	0.000072			
	R(calc.)	0.00020			
	st.dev.(ISO12185:96)	0.000179			
	R(ISO12185:96)	0.0005			
0.9071 T					8000
0.9069 +					7000 - Kernel Density
0.9067					
0.9065					Δ 5000 -

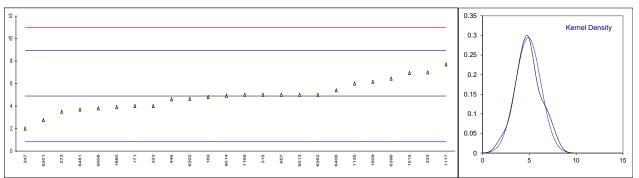
Styrene: iis22C08 page 17 of 37

Determination of Inhibitor as TBC on sample #22180; results in mg/kg


lab	method	value	mark z(targ)	remarks
150	D4590	4	-0.28	
169	D4590	4.0	-0.28	
171	D4590	4.5	0.25	
173				
273	D4590	5.5	1.30	
315	D4590	4.9	0.67	
323	D4590	5	0.77	
333	D4590	3.5	-0.80	
347	D4590	4	-0.28	
446	D4590	5.4	1.20	
551				
557				
657	D4590	4.9	0.67	
902				
913				
1117	D4590	4.85	0.62	
1135	D4590	3	-1.33	
1169	D4590	4.2	-0.07	
1264				
1509	D4590	4.483	0.23	
1515	D4590	4.4587	0.20	
1823				
1880	D4590	3.2	-1.12	
6013	D4590	4.7	0.46	
6198				
6201	D4590	3.8	-0.49	
6202	D4590	4.80	0.56	
6262	D4590	3.1	-1.22	
6396	D4590	4.36	0.10	
6406	D4590	4.4	0.14	
6481	D4590	3.79	-0.50	
7014				
9008	D4590	3.4	-0.91	
9014	D4590	4.36	0.10	
	normality	OK		
	n	25		
	outliers	0		
	mean (n)	4.264		
	st.dev. (n)	0.6842		
	R(calc.)	1.916		
	st.dev.(D4590:18)	0.9503		
	R(D4590:18)	2.661		
	11(04000.10)	2.001		

page 18 of 37 Styrene: iis22C08

Determination of Peroxides as H₂O₂ on sample #22180; results in mg/kg

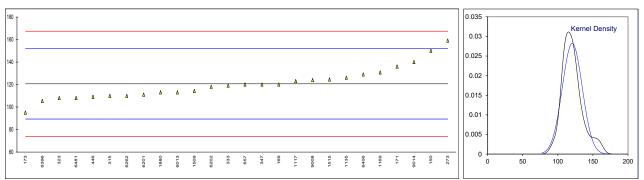

lab	method	value	mark	z(targ)	remarks
150	D2340	45		-0.03	
169	D2340	40		-1.11	
171	D2340	12	G(0.05)	-7.14	
173			` ,		
273					
315	D2340	33		-2.61	
323					
333	D2340	45		-0.03	
347					
446	D2340	44		-0.24	
551					
557					
657	D2340	>60		>3.20	possibly a false positive test result?
902					
913					
1117	D2340	37		-1.75	
1135	D2340	30		-3.26	
1169					
1264					
1509	D2340	28.06		-3.68	
1515					
1823					
1880	D2340	60		3.20	
6013	D2340	46		0.19	
6198					
6201	D2340	14	G(0.05)	-6.71	
6202	D2340	57.07		2.57	
6262	D2340	47		0.40	
6396	D2340	88.66	G(0.05)	9.38	
6406	D0040				
6481	D2340	56		2.34	
7014	D0040			4.00	
9008	D2340	63.7		4.00	
9014					
	normality	OK			
	n	14			
	outliers	3			
	mean (n)	45.131			
	st.dev. (n)	11.0666			
	R(calc.)	30.986			
	st.dev.(D2340:18)	4.6429			
	R(D2340:18)	13			
	,,	-			

Styrene: iis22C08 page 19 of 37

Determination of Polymer on sample #22180; results in mg/kg

lab	method	value	mark z(targ	remarks
150	D2121-A	<1		
169	D2121-A	4.8	-0.04	
171	D2121-A	4	-0.43	
173				
273	D2121-A	3.5	-0.68	
315	D2121-A	5	0.06	
323	D2121-A	4	-0.43	
333	D2121-A	7	1.04	
347	INH-3007	2	-1.42	
446	D2121-A	4.6	-0.14	
551				
557				
657	D2121-A	5	0.06	
902				
913				•
1117	D2121-A	7.7	1.38	
1135	D2121-A	6	0.55	
1169	D2121-A	5.0	0.06	
1264				
1509	D2121-A	6.158	0.63	
1515	D2121-A	6.92990	1.01	
1823				
1880	D2121-A	3.9	-0.48	
6013	D2121-A	5	0.06	
6198				
6201	D2121-A	2.75	-1.05	
6202	D2121-A	4.64	-0.12	
6262	D2121-A	5	0.06	
6396	D2121-A	6.44	0.76	
6406	D2121-A	5.4	0.25	i
6481	D2121-A	3.69	-0.59	
7014				
9008	In house	3.8	-0.53	
9014	D2121-A	4.914	0.01	
	normality	OK		
	n	24		
	outliers	0		
	mean (n)	4.884		
	` ,			
	st.dev. (n)	1.3559 3.796		
	R(calc.)	2.0344		
	st.dev.(D2121-A:16)			
	R(D2121-A:16)	5.696		

page 20 of 37 Styrene: iis22C08


Determination of Total Sulfur on sample #22180; results in mg/kg

			 	<i>'</i>	
lab	method	value	mark z	(targ)	remarks
150	D5453	<1.0			
169	D5453	<1.0			
171	D5453	<1.0			
173					
273					
315	D7183	<0.10			
323	D5453	< 1			
333	D5453	<0.5			
347	D5453	<1			
446					
551					
557					
657	D5453	<1			
902					
913					
1117	D5453	0.038			
1135	D5453	<1.0			
1169					
1264					
1509	D5453	0.08			
1515					
1823					
1880	D5453	<0.1			
6013					
6198					
6201	D5453	0.58			
6202	D5453	< 0.09			
6262	D5453	<1			
6396	D5453	0.10			
6406	D5453	<0.1			
6481	D5453	0.10			
7014					
9008	D5453	<0.1			
9014					
	n	19			
	mean (n)	<1			
	` /				

Styrene: iis22C08 page 21 of 37

Determination of Water on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	E1064	150		1.88	
169	E1064	120		-0.04	
171	E1064	136		0.99	
173	E203	95		-1.64	
273	E203	159		2.46	
315	E1064	110		-0.68	
323	E1064	108		-0.81	
333	D1364	119		-0.10	
347	E1064	120		-0.04	
446	E1064	109		-0.74	
551					
557					
657	E1064	120		-0.04	
902	21004				
913					
1117		123		0.15	
1135	E1064	126		0.15	
1169	E1064	130.7		0.65	
1264	L1004				
1509	E1064	114.35		-0.40	
1515	E1064	124.5		0.25	
1823	L1004				
1880	E1064	113		-0.49	
6013	E1064	113		-0.49	
6198	2.00.				
6201	E1064	111	С	-0.62	first reported 0.0111 mg/kg
6202	D6304	118.0	Č	-0.17	first reported 162.7
6262	E1064	110	•	-0.68	
6396	E1064	105.4		-0.97	
6406	ISO12937	129		0.54	
6481	E1064	108		-0.81	
7014					
9008	D6304	124		0.22	
9014	E203	140		1.24	
	normality	suspect			
	n	26 ·			
	outliers	0			
	mean (n)	120.61			
	st.dev. (n)	14.152			
	R(calc.)	39.63			
	st.dev.(E1064:16)	15.610			
	R(E1064:16)	43.71			
	•				

page 22 of 37 Styrene: iis22C08

Determination of Purity by GC on sample #22180; results in %M/M

lab	method	value	mark	z(targ)	remarks	
150	D5135	99.93		-1.05		
169	D5135	99.94		-0.11		
171	D5135	99.92		-1.98		
173						
273	D5135	99.95		0.83		
315	D5135	99.94		-0.11		
323	D5135	99.93		-1.05		
333	D5135	99.96		1.77		
347	D5135	99.93		-1.05		
446	D5135	99.95		0.83		
551						
557						
657	D5135	99.94		-0.11		
902						
913						
1117	D5135	99.93		-1.05		
1135						
1169	D5135	99.96		1.77		
1264						
1509	D5135	99.944		0.27		
1515	D5135	99.94821		0.66		
1823	D7504			4.00		
1880	D7504	99.927		-1.33		
6013						
6198	DE12E	00.020		0.20		
6201 6202	D5135	99.938	0	-0.30	first reported 00 0204	
6262	D5135	99.9421 99.92	C C	0.09 -1.98	first reported 99.9394	
6396	D5135 D5135	99.92	C	1.77	first reported 99.86	
6406	D5135	99.9475		0.60		
6481	D7504	99.9685		2.56		
7014	D1304			2.50		
9008	D7504	99.93		-1.05		
9014	D7 304			-1.00		
0014						
	normality	OK				
	n	22				
	outliers	0				
	mean (n)	99.9412				
	st.dev. (n)	0.01345				
	R(calc.)	0.0377				
	st.dev.(D5135:21)	0.01066				
	R(D5135:21)	0.0299				
99.98 T						35
					Δ	Kernel Density
99.96					Δ Δ Δ	30
				. , Δ	Δ Δ Δ	25 -
99.94		Δ Δ	Δ Δ	<u> </u>		/ \\
00.02	Δ Δ Δ Δ	Δ				20 - // \\
99.92	u .					15 -
99.9						
						10 - //
99.88						5 / //
99.86	3282 1880 150 347	320 1	315	940 80	1616 273 333 1169 3386	99.88 99.9 99.92 99.94 99.96 99.98 100
-	8 8 6 5 6 5	6 69 6	315	1508	1516 273 333 6396 6481	99.88 99.9 99.92 99.94 99.96 99.98 100
L						

Styrene: iis22C08 page 23 of 37

Determination of Benzene on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	14	man	-0.76	Tomano
169	D5135	14.6		-0.51	
171	D6229	14		-0.76	
173	50220				
273					
315	D6229	17.0		0.48	
323	INH-189	17		0.48	
333	D5135	14		-0.76	
347	50.00				
446	D5135	16		0.06	
551	20.00				
557					
657	D5135	17.6939		0.76	
902	20.00				
913					
1117		18.28		1.00	
1135					
1169					
1264					
1509	In house	14.45		-0.58	
1515	D5135	13.5		-0.97	
1823					
1880	D4534	14.7		-0.47	
6013					
6198					
6201	D6229	20		1.71	
6202	D5135	15.16		-0.28	
6262	D6229	16		0.06	
6396	D5135	<3		<-5.30	possibly a false negative test result?
6406	D5135	18		0.89	
6481	D7504	3	G(0.01)	-5.30	
7014					
9008	D6229	15		-0.35	
9014					
	normality	OK			
	n	17			
	outliers	1			
	mean (n)	15.846			
	st.dev. (n)	1.8654			
	R(calc.)	5.223			
	st.dev.(D5135:21)	2.4254			
	R(D5135:21)	6.791			
25 T					0.25
					Kernel Density
20					
25					Λ Δ Δ
			Δ Δ	Δ	Δ -
15 -	Δ Δ Δ Δ	Δ Δ	Δ Δ		0.15 -
10					0.1
5					0.05 -
x					
0	10 0 0		m Al	ο	
6481	1515 1509 1711	1880	9008	315	§ \$ \$ \frac{1}{2} \ \frac{1}{2

page 24 of 37 Styrene: iis22C08

Determination of Toluene on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	19		0.90	
169	20100				
171	D5135	77	G(0.01)	32.98	
173	20100		3(0.01)		
273					
315	D5135	17		-0.20	
323	INH-189	18		0.35	
333	IIVII-109	10		0.33	
347	DE125	 17		0.20	
446	D5135	17		-0.20	
551					
557	5-10-				
657	D5135	17.7701	С	0.22	first reported <10
902					
913					
1117	D5135	18.56		0.66	
1135					
1169					
1264					
1509	D5135	15.12		-1.24	
1515	D5135	15.2		-1.20	
1823					
1880					
6013					
6198					
6201	D5135	17		-0.20	
6202	D5135	16.50		-0.48	
6262	D5135	20		1.46	
6396	D5135	<3		<-7.42	possibly a false negative test result?
6406	D5135	19		0.90	possizify a raise negative test result.
6481	D7504	17	С	-0.20	first reported 0
7014	D7004		O		mot reported o
9008	D6229	16		-0.76	
9014	D0229			-0.70	
3014					
	normality	OK			
	normality				
	n	14			
	outliers	1			
	mean (n)	17.368			
	st.dev. (n)	1.4453			
	R(calc.)	4.047			
	st.dev.(Horwitz)	1.8083			
	R(Horwitz)	5.063			
³⁰ T					0.3
28					Kernel Density
26					0.25 -
24 -					
					0.2 -
22					
20 +					Δ 0.15 -
18		Δ Δ Δ	Δ Δ	Δ	
16	Δ Δ	"	-		0.1 -
14					
12					0.05
10					
1509	9008	315 6201	6481	323	E 9 8 8 E 0 20 40 60 80 100
		·	-		

Styrene: iis22C08 page 25 of 37

Determination of Ethylbenzene on sample #22180; results in mg/kg

				-14 :	
lab	method	value	mark	z(targ)	remarks
150	D5135	135		0.28	
169	D5135	131.2		-0.08	
171	D5135	141		0.84	
173					
273					
	DE405				
315	D5135	138		0.56	
323	D5135	129		-0.29	
333	D5135	140		0.75	
347	D5135	120		-1.14	
446	D5135	134		0.18	
551					
557					
657	D5135	129.5958		-0.23	
	D3133				
902					
913					
1117	D5135	133.5		0.13	
1135					
1169	D5135	131		-0.10	
1264					
1509	D5135	134.31		0.21	
1515	D5135	120.6		-1.08	
1823					
1880	D7504	130		-0.20	
6013					
6198					
6201	D5135	134		0.18	
6202	D5135	122.32		-0.92	
6262		134	С	0.18	first reported 160
	D5135		C		
6396	D5135	<3		<-12.17	possibly a false negative test result?
6406	D5135	132		-0.01	
6481	D7504	137	С	0.46	first reported 5
7014					
9008	D7504	135		0.28	
9014	27001				
3014					
	P.	014			
	normality	OK			
	n	20			
	outliers	0			
	mean (n)	132.076			
	st.dev. (n)	5.7654			
	R(calc.)	16.143			
	st.dev.(D5135:21)	10.6021			
	R(D5135:21)	29.686			
170 T					0.1
160 +					0.09 - Kernel Density
150 +					0.08 -
140 +					Δ Δ Δ 0.07 -
130 +	Λ Δ Δ	Δ Δ	Δ Δ Δ	Δ Δ	Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ
120 + A	Δ Δ				0.05 -
110					0.04 -
100 -					0.03
90 +					NI A
					0.02
80 +					0.01 -
70	0 4 3 5 2	0 0 0	ν φ -	0 N	0 0 0 7 0 0
347	323 323 657	1169	446	6262	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

page 26 of 37 Styrene: iis22C08

Determination of sum of m- and p-Xylenes on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	<10			
169					
171	D5135	<10			
173					
273					
315					
323	D5135	< 10			
333	D5135	<10			
347					
446					
551					
557					
657	D5135	<10			
902					
913					
1117	D5135	0			
1135	B=10=				
1169	D5135	<1			
1264	DE405				
1509	D5135	1.15			
1515	D5135	22			
1823	D7504	<10			
1880 6013	D7504				
6198					
6201	D5135	0			
6202	D5135	<4			
6262	D5135	15			
6396	D5135	2.9752	С		first reported 0.00029752 mg/kg
6406	D3 133		J		mat reported 0.00020702 mg/kg
6481	D7504	0			
7014	2.001				
9008	D7504	<10			
9014					
	n	14			
	mean (n)	<10			
	• •				

Styrene: iis22C08 page 27 of 37

Determination of iso-Propylbenzene (Cumene) on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	<10			
169					
171	D5135	<10			
173					
273					
315	D5135	<10			
323	D5135	< 10			
333	D5135	<10			
347					
446	D5135	<3			
551					
557					
657	D5135	<10			
902					
913					
1117	D5135	0			
1135					
1169					
1264	B-10-				
1509	D5135	0			
1515	D5135	0			
1823	B7504				
1880	D7504	<10			
6013					
6198	DE405				
6201	D5135	0			
6202	D5135	<2			
6262	D5135	7			
6396	D5135	<3			
6406	D7504		0		first non-outs of 440
6481	D7504	0	С		first reported 116
7014	D7504				
9008	D7504	<10			
9014					
	n	17			
	mean (n)	<10			
	` '				

page 28 of 37 Styrene: iis22C08

Determination of o-Xylene on sample #22180; results in mg/kg

lab	method	value	mark	z(tara)	remarks
150	D5135	<10	IIIai K	z(targ)	I GIII I I I I I I I I I I I I I I I I
169	טפוטט	< 10 			
171	D5135	<10			
173	D3 133				
273					
315	D5135	<10			
323	D5135	< 10			
333	20100				
347					
446	D5135	<3			
551					
557					
657	D5135	<10			
902					
913					
1117	D5135	1.6			
1135					
1169	D5135	<1			
1264					
1509	D5135	0.99			
1515	D5135	0			
1823	D7504				
1880	D7504	<10			
6013					
6198	DE405				
6201	D5135	0			
6202	D5135 D5135	<2			
6262 6396	D5135 D5135	3 <3			
6406	טפוטט	<u></u>			
6481	D7504	0	С		first reported 107
7014	D7304		C		ilist reported 107
9008	D7504	<10			
9014	B7004				
0017					
	n	17			
	mean (n)	<10			
	` '				

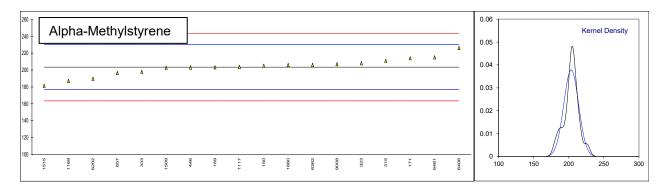
Styrene: iis22C08 page 29 of 37

Determination of n-Propylbenzene on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	<10			
169					
171	D5135	<10			
173					
273					
315	D5135	<10			
323	D5135	< 10			
333					
347					
446					
551					
557					
657	D5135	<10			
902					
913	B=10=				
1117	D5135	0			
1135					
1169					
1264	DE405				
1509	D5135	0			
1515	D5135	0			
1823	D7E04				
1880 6013	D7504	<10			
6198					
6201					
6202	D5135	<2			
6262	D3133				
6396	D5135	<3			
6406	D3133				
6481					
7014					
9008	D7504	<10			
9014	2.00.				
	n	12			
	mean (n)	<10			
	` '	-			

page 30 of 37 Styrene: iis22C08

Determination of sum of m- and p-Ethyltoluenes on sample #22180; results in mg/kg


lab	method	value	mark	z(targ)	remarks
150	D5135	<10			
169					
171					
173					
273					
315	D5135	<10			
323	D5135	< 10			
333					
347					
446					
551					
557					
657	D5135	<10			
902					
913					
1117	D5135	32			possibly a false positive test result?
1135					
1169					
1264					
1509	D5135	1.13			
1515	D5135	0			
1823	D7504				
1880	D7504	<10			
6013					
6198					
6201	DE405				
6202	D5135	<4			
6262					
6396					
6406					
6481					
7014	D7504				
9008	D7504	<10			
9014					
	n	9			
	mean (n)	<10			

Styrene: iis22C08 page 31 of 37

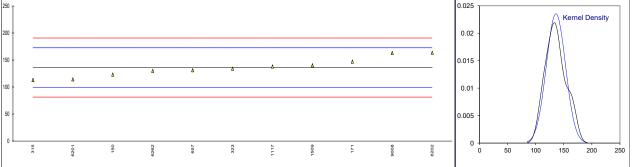
Determination of alpha-Methylstyrene, 1,2-Diethylbenzene and sum of alpha-Methylstyrene + 1,2-Diethylbenzene on sample #22180; results in mg/kg

lab	method	alpha-MS	mark	z(targ)	1,2-DeB	mark	z(targ)	eum	mark	z(targ)
			IIIaik		·	IIIaik		sum	IIIaik	Z(lary)
150	D5135	205		0.11						
169	D5135	203.2		-0.02						
171	D5135	214		0.79						
173										
273	DE40E	244		0.50						
315	D5135	211		0.56						
323	D5135	208		0.34						
333	D5135	198		-0.41						
347	D5135	203		-0.04						
446	D3133									
551										
557	DE40E	400 4500		0.50						
657	D5135	196.4502		-0.53						
902										
913	DE405									
1117	D5135	203.8		0.02						
1135	DE405	407		4.04						
1169	D5135	187		-1.24						
1264	DE405									
1509	D5135	202.67		-0.06						
1515	D5135	181.3		-1.66						
1823	D7504			0.40						
1880	D7504	206		0.19						
6013										
6198										
6201	DE405	400.00		4.04					_	
6202	D5135	189.62		-1.04	<2			<2	E	
6262	D5135	206		0.19	<3			206		
6396	D5135	<3	f-?	<-14.24						
6406	D5135	226	^	1.69						
6481	D7504	215	С	0.86						
7014	D7504									
9008	D7504	207		0.26						
9014										
	normality n	OK 18								
	outliers	0								
	mean (n)	203.502								
	st.dev. (n)	10.5470								
	R(calc.)	29.532								
	st.dev.(D5135:21)	13.3438								
	R(D5135:21)	37.363								
	(20100.21)	57.000								

lab 6481 first reported 105 lab 6396 possibly a false negative test result?

page 32 of 37 Styrene: iis22C08

Determination of Phenylacetylene, 3/4-Methylstyrenes and sum of Phenylacetylene + 3/4-Methylstyrenes on sample #22180; results in mg/kg


lab	method	Phenylacetylene	mark	z(targ)	3/4M.styrenes	mark	z(targ)	sum	mark	z(targ)
150	D5135	18								
169	D5135	16								
171	D5135	<10								
173										
273										
315	D5135	<10								
323	D5135	< 10								
333	D5135	<10								
347										
446	D5135	13								
551										
557										
657	D5135	<10			17.9194			24.8441		
902										
913										
1117	D5135	20.1			0			20		
1135										
1169	D5135	<1								
1264										
1509	D5135	7.03			0					
1515	D5135	0			19.4			19.4		
1823										
1880	D7504	<10								
6013										
6198										
6201	D5135	18			202	f+?		220		
6202	D5135	<2			15.40					
6262	D5135	18								
6396	D5135	5.1161	С							
6406	D5135	15								
6481	D7504	6								
7014										
9008	D7504	17								
9014										
	n	12								
	mean (n)	<10								

lab 6396 first reported 0.00051161 mg/kg lab 1509 reported only 4-methylstyrene lab 6201 possibly a false positive test result?

Styrene: iis22C08 page 33 of 37

Determination of Benzaldehyde on sample #22180; results in mg/kg

lab	method	value	mark	z(targ)	remarks
150	D5135	123		-0.72	
169					
171	D5135	147		0.60	
173					
273	DE40E	440		4.00	
315	D5135	113		-1.26	
323 333	D5135	134		-0.11 	
347					
446					
551					
557					
657	D5135Mod.	131.0046		-0.28	
902					
913					
1117	D5135	138		0.11	
1135					
1169					
1264					
1509	D5135	140.02		0.22	
1515					
1823					
1880					
6013					
6198 6201	D5135	114		 -1.21	
6202	D5135	163.5	С	1.51	first reported 190.94
6262	D5135	130	C	-0.33	ilist reported 190.94
6396	D5135	<3		<-6.69	possibly a false negative test result?
6406	50100				possibly a raise megative test result.
6481					
7014					
9008	D7504	163		1.48	
9014					
	normality	OK			
	n	11			
	outliers	0			
	mean (n)	136.048			
	st.dev. (n)	16.9509			
	R(calc.) st.dev.(D5135:21)	47.463 18.2207			
	R(D5135:21)	51.018			
	11(00100.21)	31.010			
					1
250 T					0.025 \rightarrow \text{Kernel Density}
200					None Density

page 34 of 37 Styrene: iis22C08

Determination of Non-aromatics on sample #22180; results in mg/kg

1-1-		live		-/4- us-\		
lab	method	value	mark	z(targ)	remarks	
150 169	D5135	50 		0.30		
171	D5135	49		0.25		
173	D3133					
273						
315	D5135	60		0.84		
323	D5135	37		-0.40		
333						
347						
446	D5135	86		2.25		
551 557						
657						
902						
913						
1117	D5135	590	C,G(0.01)	29.49	first reported 170	
1135			,		·	
1169						
1264						
1509	DE40E	2.4				
1515 1823	D5135	3.1		-2.23		
1880						
6013						
6198						
6201	D5135	16		-1.54		
6202	D5135	20.97		-1.27		
6262	D5135	122		4.19		
6396	D5135	<3				
6406	D7504			2.40		
6481 7014	D7504	0 		-2.40		
9008						
9014						
	normality	OK				
	n	10				
	outliers	1				
	mean (n)	44.407				
	st.dev. (n)	38.2034				
	R(calc.) st.dev.(D5135:21)	106.970 18.5029				
	R(D5135:21)	51.808				
	N(D0100.21)	31.000				
						To acco
100 -						0.012 Kernel Density
100 7						0.01 -
80 -					Δ	.
						0.008 -
60 +				Δ		
			Δ	1		0.006 -
40 +		Δ				0.004 -

Styrene: iis22C08 page 35 of 37

APPENDIX 2

Number of participants per country

- 3 labs in BELGIUM
- 2 labs in BRAZIL
- 1 lab in CANADA
- 2 labs in CHINA, People's Republic
- 1 lab in FRANCE
- 1 lab in INDIA
- 1 lab in INDONESIA
- 1 lab in IRAN, Islamic Republic of
- 2 labs in KUWAIT
- 4 labs in NETHERLANDS
- 1 lab in SAUDI ARABIA
- 2 labs in SINGAPORE
- 1 lab in SOUTH AFRICA
- 1 lab in SPAIN
- 3 labs in TURKEY
- 1 lab in UNITED KINGDOM
- 7 labs in UNITED STATES OF AMERICA

page 36 of 37 Styrene: iis22C08

APPENDIX 3

Abbreviations

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test
D(0.05) = straggler in Dixon's outlier test
G(0.01) = outlier in Grubbs' outlier test
G(0.05) = straggler in Grubbs' outlier test
DG(0.01) = outlier in Double Grubbs' outlier test

DG(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported

f+? = possibly a false positive test result? f-? = possibly a false negative test result?

SDS = Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983)

Styrene: iis22C08 page 37 of 37